
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 283 (2005) 487–494
0022-460X/$ -

doi:10.1016/j.

�Correspon
E-mail add
www.elsevier.com/locate/jsvi
Short Communication

Improvable bounds on the largest eigenvalue of a completely
positive finite element flexibility matrix

Isaac Fried�, Michael Coleman

Department of Mathematics, Boston University, 111 Cummington Street, Boston, MA 02215, USA

Received 3 June 2004; accepted 13 June 2004
1. Introduction

Under certain conditions of element configuration and order the finite element flexibility matrix
derived for second-order problems is completely positive, Fij40: Then the Perron–Frobenius
theorem on the positivity of the eigenvector corresponding to the least eigenvalue, l1ðKÞ; of
stiffness matrix K, applies. For such matrices Gershgorin’s theorem can be applied iteratively to
produce ever tighter upper and lower bounds on l1ðKÞ; and consequently on the spectral
condition number [1] of the stiffness matrix K, a number that is essential for assessing the quality
of any numerical computation involving K.
2. The Perron–Frobenius and Gershgorin’s theorems

For completeness sake we restate these theorems here but without proof. See Ref. [2].

Perron–Frobenius theorem. Let real matrix F ¼ F ðn � nÞ be positive and symmetrical, F ¼ FT:
Then the eigenvector v corresponding to the largest eigenvalue lnðF Þ of matix F is positive, vi40;
i ¼ 1; 2; :::; n:
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Gershgorin’s theorem. Let si be the sum of the moduli of the elements Fij along the ith row of real and
symmetric matrix F excluding the diagonal element Fii: Then each eigenvalue of F lies inside or on

the boundary of at least one of the intervals jl� Fiij ¼ si: In other words,

l1ðFÞXmin
i

F ii �
X
iaj

jFijj

 !
and lnðF Þpmax

i
F ii þ

X
iaj

jFijj

 !
; i ¼ 1; 2; :::; n: (1)
The last theorem can be strengthened somewhat in case an eigenvector is known to be
completely positive, but this is not essential to our following discussion.

3. Two-node string element

We look first at the simple boundary value problem

u00 þ f ðxÞ ¼ 0 0oxo1; u0ð0Þ ¼ uð1Þ ¼ 0; (2)

describing the deflection u of a loaded unit string held under unit tension. In case f ðxÞ40; then
u00o0; and the deflection curve of the string is concave, if positive u is down, as in Fig. 1.
The finite element stiffness and mass matrices for problem (2) are

k ¼
1

h

1 �1

�1 1

� �
and m ¼

h

6

2 1

1 2

� �
; (3)

respectively, with h denoting the element size. Matrix k is symmetric and positive semidefinite,
while matrix m is symmetric and positive definite.
Since kijo0 if iaj and kii40; the assembled global stiffness matrix K is also of this structure.

For such matrices we have the following lemma.

Lemma. Let symmetric tridiagonal matrix K be positive definite and of the general form

K ¼

þ �

� þ �

� þ �

� þ �

� þ

2
6666664

3
7777775
¼

p n

n p n

n p n

n p n

n p

2
6666664

3
7777775

(4)

in which p symbolizes a positive number, and n a negative. Then Fij ¼ K�1
ij 40:
1 2 3 4 5 1 2 3 4 5

1

1

u u

Fig. 1. A symmetrical taut string under one point force.
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Proof. We write out the matrix equation KF ¼ I as

p n

n p n

n p n

n p n

n p

2
6666664

3
7777775

F ¼

1

1

1

1

1

2
6666664

3
7777775
: (5)

Since matrix K is positive definite the Gauss elimination algorithm leaves all elimination pivots in
this matrix positive, and we bring the matrix linear system by a succession of elementary
operations to the upper triangular form

p n

p n

p n

p n

p

2
6666664

3
7777775

F ¼

1

p 1

p p 1

p p p 1

p p p p 1

2
6666664

3
7777775
; (6)

from which it easily results that K�1 ¼ F is completely positive, Fij40: &

For the string global stiffness matrix

K�1 ¼
1

h

1 �1

�1 2 �1

�1 2 �1

�1 2 �1

�1 2 �1

�1 2

2
666666666664

3
777777777775

�1

¼ h

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1

1 1

1

2
666666666664

3
777777777775

1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

2
666666666664

3
777777777775
¼ h

6 5 4 3 2 1

5 5 4 3 2 1

4 4 4 3 2 1

3 3 3 3 2 1

2 2 2 2 2 1

1 1 1 1 1 1

2
666666666664

3
777777777775
¼ F ; ð7Þ

written here for the specific h ¼ 1=n; n ¼ 6: Analytically,

Fij ¼
1

n
ðn þ 1� jÞ; jXi: (8)
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The jth column of F represents the discrete response of the string to a unit force at the jth
node—it is the discrete Green’s function for that point. See Fig. 1.
The flexibility matrix F is symmetric and positive definite since the stiffness matrix K is such. It

is also dense—none of its entries is zero, positive—all its entries are larger than zero, and
bounded—here Fijp1 for any n.
All this is physically plausible. It is in the nature of the string that a concentrated force applied

at any interior point causes all points of the string to move, and all in the direction of the applied
force, and this is manifested in F being dense and positive. The finite element deflection computed
for the point-loaded string is theoretically exact for any number of nodes, and hence the
maximum deflection, and with it maxFij ; is fixed for any n.
A string cannot transmit rotation or torque (one cannot use a string or rope as a lever), and

under the action of a concentrated load it abruptly changes slope. Consequently if the string is
internally fixed, then the problem of computing its displacements separates into two
disjoint problems between the two pairs of supports, or K becomes reducible. Otherwise K is
irreducible.
Symmetry in F constitutes a discrete counterpart to the Betti–Maxwell reciprocal theorem of

elasticity: A unit force at node i causes the same deflection at node j as a unit force at j causes at i. See
Fig. 1.
An experimental F is constructed by measuring the nodal deflections resulting from a

unit force applied sequentially at all nodes. Because F is symmetric, the deflection curve
due to one force can be determined by measuring displacement u at a fixed point, where
it may be measured most conveniently and accurately, while shifting the force from point
to point.
To this extent the algebraic formulation of the string discretized by linear finite elements

faithfully imitated the analytical model of the string; both sensibly duplicating nature. It must be
borne in mind, however, that generally the analytical or physical properties of the algebraically
described problem may correctly appear only in the limit of the discretization as the element size
becomes ever smaller. In particular, while the positive definitness of the global stiffness matrix K is
guaranteed by the variational nature of the finite element method, the positiveness of flexibility
matrix F may generally materialize, even for problems with a positive Green’s function, only for a
fine mesh.
The previous lemma readily admits the following generalization.
Theorem. Let the symmetric matrix K be positive definite and of the general form

K ¼

p n

n p n

n p n

n p n

n p

2
6666664

3
7777775
þ

z z z

z z

z z

z z

z z z

2
6666664

3
7777775
; (9)

in which, generically, p40; no0; and zp0: Then Fij ¼ K�1
ij 40:
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4. Improvable Gershgorin bounds on l1ðKÞ

For vector e ¼ ð1; 1; :::; 1Þ; vector Ke holds as components the row sums of K. For Matrix K
such that Kii40 and Kijp0; iaj; Gershgorin’s theorem may be expressed as

l1ðKÞXmin
i

ðKeÞi; i ¼ 1; 2; :::; n: (10)

But since the row sum of the finite element global stiffness matrix K is mostly zero (K being the
discrete counterpart to the second degree differential operator) Gershgorin’s theorem applied
directly to K reduces to the trivial bound l1ðKÞX0; correct for any positive semidefinite matrix.
The great practical interest of the bound form of Eq. (10) is that Ke, or for that matter, Kx for

any vector x, may be computed on the finite element level without the need to actually assemble
the global stiffness matrix K.
A better bound on l1ðKÞ may be obtained by modifying K by the similarity transformation

PKP�1 designed to render K diagonally dominant while leaving all eigenvalues unchanged.
Matters are considerably simplified if for large n we restrict matrix P to a diagonal form, denoted
by D, and being such that Dij ¼ 0; iaj:
Let stiffness matrix K be, as before, such that Kii40 and Kijp0; then the flexibility matrix

F ¼ K�1 is positive and eigenvector v corresponding to lnðF Þ is positive. But l1ðKÞ ¼ 1=lnðF Þ;
and v is also the eigenvector of K corresponding to its lowest eigenvalue. Under these
circumstances, the optimal D is such that D�1KDe ¼ le; or KDe ¼ lDe; where l is a scalar
constant, and where vector e ¼ ð1; 1; 1; :::; 1Þ: Because vi40 we may set Dii ¼ vi so that De ¼ v;
and KDe ¼ lDe becomes Kv ¼ lv; implying that l ¼ l1ðKÞ:
In conclusion, if x is a good approximation to the eigenvector corresponding to the lowest

eigenvalue of matrix K, a vector that may be obtained from any iterative method designed to
produce such good eigenvector approximations, then

l1ðKÞXmin
i

ðKxÞi
xi

; i ¼ 1; 2; :::; n; (11)

with equality happening for x ¼ v:
For example, if

K ¼

1 �1

�1 2 �1

�1 2

2
64

3
75 and x ¼

2

1:8

1

2
64

3
75; (12)

then

l1ðKÞXmin
i

0:2=2

0:6=1:8

0:2=1

2
64

3
75 ¼ 0:1 (13)
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as compared to l1ðKÞ ¼ 0:198: Taking x ¼ ð2:25; 1:8; 1Þ we obtain the better result

l1ðKÞXmin
i

0:45=2:25

0:35=1:8

0:2=1

2
64

3
75 ¼ min

i

0:2

0:19444

0:2

2
64

3
75 ¼ 0:19444 (14)

as compared to l1ðKÞ ¼ 0:198:
5. The infinity norm of flexibility matrix F

The infinity norm of matrix F ¼ Fðn � nÞ is defined as

kFk1 ¼ max
i

X
j

jFijj: (15)

If flexibility matrix F is positive, then kFk1 ¼ maxi ðFeÞi; where i is the row index. It results then
from Gershgorin’s theorem that

lnðF ÞpkFk1 or l1ðKÞX
1

kFk1
; (16)

since F ¼ K�1 and l1ðKÞ � lnðFÞ ¼ 1:
The following theorem indicates how to iteratively tighten the bounds on kFk1; and hence

bounds on l1ðKÞ; using only matrix K.

Theorem. Let flexibility matrix F be positive, x an arbitrary vector, and r ¼ Kx � e: Then

kxk1
1þ krk1

pkFk1p
kxk1

1� krk1
(17)

provided that krk1o1:

Proof. Write x ¼ F ðr þ eÞ to have kxkpkFk kr þ ek: Consequently, kxkpkFkð1þ krkÞ from
which the left-hand side of inequality (17) readily follows. Write x � Fe ¼ Fr to have kFrk ¼

kx � Fek ¼ kFe � xk: Hence, kFk krkXkFe � xk: But kFe � xkXkFek � kxk so that kFk krkX
kFek � kxk: The right-hand side of inequality (17) follows then immediately from the fact that
kFek1 ¼ kFk1: &
6. Three-node string element

The element matrices for a three-node quadratic element of size 2h are

k ¼
1

6h

7 �8 1

�8 16 �8

1 �8 7

2
64

3
75 and m ¼

h

15

4 2 �1

2 16 2

�1 2 4

2
64

3
75; (18)
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with the element stiffness matrix k seen to have the positive off-diagonal entry k13 ¼ 1: Hence, the
assembled global matrix K is also with positive off diagonal entries, and it is not in the form
of Eq. (9). Yet, K�1 ¼ F is still positive, and we may apply to it Eq. (17) . For example, if

K ¼

7 �8 1

�8 16 �8

1 �8 14 �8

�8 16

2
6664

3
7775 and x ¼

1:65

1:5

1:2

0:65

2
6664

3
7775; then r ¼ Kx � e ¼

�0:25

0:20

0:25

�0:20

2
6664

3
7775 (19)

and

1:32pkFk1jp2:2 so that 0:4545pl1ðKÞ (20)

as compared to the directly computed l1ðKÞ ¼ 0:7279:
7. Three-node triangular membrane element

The bounding possibilities for the extremal eigenvalues of the global finite element stiffness and
flexibility matrices K and F, described in the previous sections for the string, is of practical interest
as they happen also in higher dimensions.
The linear membrane element stiffness matrix of a triangle of sides L1; L2; L3 is

k ¼
1

8A
L2
1

2 �1 �1

�1 0 1

�1 1 0

2
64

3
75þ L2

2

0 �1 1

�1 2 �1

1 �1 0

2
64

3
75þ L2

3

0 1 �1

1 0 �1

�1 �1 2

2
64

3
75

0
B@

1
CA; (21)

in which A denotes the area of the triangle. The same element stiffness matrix may be written in
terms of the three vertex angles a1; a2; a3 as

k ¼
1

4A

L2
1 �L1L2 cos a3 �L1L3 cos a2

�L1L2 cos a3 L2
2 �L2L3 cos a1

�L1L3 cos a2 �L2L3 cos a1 L2
3

2
64

3
75; (22)

with all off-diagonal entries of k being negative if the triangle is acute, that is, if aio90� or
cos ai40: The global stiffness matrix K assembled from such elements is of the form of Eq. (9).
Consequently, its inverse, flexibility matrix F, is positive and the bounding procedure of Eqs. (11)
and (17) may be applied to both.
As an example consider the equilateral triangular membrane fixed at its rim and discretized

by the triangular finite elements of Eq. (22), as in Fig. 2. We take the vector x ¼

ð1:1; 2:1; 1:9; 0:9; 2:1; 2:9; 1:9; 2:1; 1:9; 1:1Þ as an approximation to the eigenvector corresponding
to the least eigenvalue of K, and obtain from Eq. (11) that l1ðKÞX1:78 as compared to the
computed l1ðKÞ ¼ 2:
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8. Four-node rectangular membrane element

The stiffness matrix of the four-node rectangular element of length a and height b is

k ¼
b

6a

2 �2 1 �1

�2 2 �1 1

1 �1 2 �2

�1 1 �2 2

2
6664

3
7775þ

a

6b

2 1 �2 �1

1 2 �1 �2

�2 �1 2 1

�1 �2 1 2

2
6664

3
7775; (23)

or in particular for a square element, when a ¼ b;

k ¼
1

6

4 �1 �1 �2

�1 4 �2 �1

�1 �2 4 �1

�2 �1 �1 4

2
6664

3
7775; (24)

which is with negative off-diagonal entries. Actually, element matrix k, and consequently global
matrix K, is with negative off-diagonal entries as long as

ffiffiffi
2

p
=2oa=bo

ffiffiffi
2

p
: To be able to

confidently apply Eq. (11) to K one would want to keep the element aspect ratio within these
bounds—not too stretched and not too compressed.
We have numerically observed that for a rectangular membrane of aspect ratio greater than

5.26, discretized by a mesh of 8� 8 rectangular finite elements, the eigenvector corresponding to
the least eigenvalue is no longer positive.
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